FUNDAMENTAL
INFORMATION
COMBINATION

METHODS



INTRODUCTION

Pur pose:

Describe and illustrate smple methods for
combining information

Overview:
e Classical Methods

e Basic Bayesian M ethods



RDMS EXAMPLE

GOAL: Estimate R(t| g) for motor component
one (MC1).

R(t| gq) = Pr (T >1) isthereliability function,
there are several choices.

g = mean time to fallure due to overheating
of MC1

T =timeto fallure

PROBLEM: Determine avaluefor q.




73 INFORMATION SOURCES
: B FOR EXAMPLE

o 2 EXperts

e 3 Computer Codes (similar system)

e 5 Sets of Datafrom Physical
Experiments




EXPERT'S INFORMATION

= Suppose Jack and Jill are identified as experts due

to their experience with MC1’ s use in previous
systems. From these elicitations, distributions

and point estimates for g are obtained.

p(q)

60 /70 80 90 100
9

mean = 80.0 standard deviation = 4.0
Jack: mean = 73.0 standard deviation = 4.0




COMPUTER CODES

Down the hall in the computer |ab, three
computer models have been identified as being
able to forecast distributions for g.

p(q)

50 60 70 80 90 100
g

mean = 78.0 standard deviation = 6.3
mean = 69.0 standard deviation = 10.8
mean = 67.0 standard deviation = 6.5




PHY SICAL EXPERIMENTS

= |n alab across the street, physical experiments
(heat stress) were performed on five different sets
of motors. For each motor, the timeto failure for

MC1 was observed.
mean  std
| 87.0 50
83.0 3.5
f(t.a) 67.0 3.0
77.0 4.0
70.0 50

60 70 | 80_90‘ 100
t = timeto fallure



INFORMATION SOURCE
INTEGRATION

Codel | Code?2

Code 3

Expert 2

Final Integrated Estimate

Experiment 2

Experiment 1 _
Experiment 3

Experiment 4

Experiment 5



APPROACHES FOR
DETERMINING g

28 Classical Estimation
— data are random
— g isfixed
— the problem isto estimate q
e Bayesian Prediction
— data are fixed

— ¢ Israndom

— the problem isto use the distribution p(q) to
predict

These differences are subtle, but lead to two
different approaches for determining q



CLASSICAL ESTIMATION: BLUE

E: Estimation
L: Linear, aweghted average
q= W1€I1 "'erlz "'Wsels T
 U: Unbiased, correct on average, é w, =1
e B: Best, most precise, min Var(E;)
-

— W; isinversely related to Var(c}i )
- w;, w; are inversely related to Correlation(q ,611-)
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CLASSICAL ESTIMATION:
EXPERT JUDGMENT

* The elicited information Is taken as estimates of g :
- Cbm 80 and anck 73
_STD(quII) =4 and STD( q]ack) =4

* An intuitive way to combine this information into
asingle estimate for q Is

— = .5(80) + .5(73) = 76.5
_STD(Q) = Sqri(.52* 42+.52* 42) = 2.82

—BL UE because the STDs are the same and the
Information is assumed independent.
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COMPUTER CODES:
SIMILARSYSTEMS

* Similar system: a process distinctly different from the
system under study (e.g., random variable T~f(t; q)),
but expected to behave in asimilar fashion

— prototypes
— components produced by the same design team
— computer codes

* Assume the performance of the similar system is
measured by X ~ f(x;d)
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SIMILAR SYSTEMS

Fr
I_‘-:icﬂl 5‘:\.&"‘

e What does it mean to be “similar”?
— |t does not mean that T and X are correlated.

 Thedistribution functions f(t;q) and f(x;d) are
similar in form and location

VN

* distreated asasurrogate for g, withq =d + e,
where e is random, with m, and s2, , OR some

other relationship between f(t;q) and f(x;d) must
be assumed and model ed
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COMPUTER CODES:
SIMILARSYSTEMS

» Computer code gives estimate of d and Var(d) + s 2.
Thisisthe similar system information.

e Suppose thereisno reason to believe d is greater

than or lessthan g. This means E(e)=0 and EI -
* Thevaranceestimatels

Var((Aq ) = Var(a) +S2,
 Now we are ready to combine the computer code
Information with the expert judgment data.

14



EXPERT JUDGEMENT + CODES

* We now have five g'sand STD(Q)'s

* The BLUE for g isaweighted average of the five
with weights inversely proportional to the STDs.

q = .34(80) + .34(73) +
14(78) + .05(69) + .13(67)
= 75.12

Std(q) =2.34
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PHY SICAL EXPERIMENT DATA

T:or a single experiment 61 and Var((A:|) are computed

in atraditional fashion using maximum |ikelihood
or method of moments estimation, e.g.,q=T.

If the experiments generated completely
Independent observations, the combined estimate
would be obtained using weights that are a
function of the individual variances (same as
previous example).

L et’ s suppose the experiments do not generate
Independent data. Now the weights for the BLUE
for g will depend both on the variances and the
correlations between the experiments.
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CLASSICAL CRITIQUE

o Advantages
— robust (distribution free)
— computationally straightforward

e Disadvantages
— sub-optimal use of information
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BAYESIAN PREDICTION

p(gldata) p t(aatajq) * p(a)

Posterior =1 kelilhood * Prior

P/rior

posteriak

likelihood

60 70 80 90 100



(@ |\ FORMATION SOURCE INTEGRATION

Code?2 | | Code3 @
Expert N /

Expert 2

=
p(Q) f (tlg)

p(alt)

Final Integrated Distribution
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FINDING THE PRIOR p (q)

Use general mixture distribution
weighting formula

P (q) =w,;-p 4 (@)+W,-p , (9)+ Wa-p 5(O)+....

Weighting Schemes
*Equal Weights
*Expert Supplied Weights
*\Weights Based on Inverse Variance
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CODE ESTIMATES

p(a)

A

50 60 70 80 90 100

q
Equal weights combination

13 P, (q)+1/3 p,(a)+ /3 P3(q)

Combined mean=71.3
Combined standard deviation=9.4

22



CODE + EXPERTS ESTIMATES

Combined Estimates:
mean=/3.9

p(a) standard deviation=8.1
95% interval [55.7, 87.6]

50 60 70 80 90 100
9

Expert supplied weights combination:

1/6 P; (q)+1/6 P2 (a)+1/6 P3(Q)+1/4 P4(d,)+1/4 P55 (0s)
{W1: Wy =Ws3 =1/6 ! Wexpertl = Wexpertz 20-25}
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ALTERNATE CODE + EXPERTS
"‘;; COMBINATION

Welghts Inver sely proportional to variances and
account for distances from overall mean

{ W3, Wy, W3, Wy, Ws} Experts Codes

For each information sourcei, i=51,2/3,4,5, let
mean = m; and standard deviation = s. Then,

m=2 M vs= S 2. g2
_a ?1 _a 1/[(ml B m) - SI ]1
i=1 i=1
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p(q)

50

ALTERNATE CODE + EXPERTS

COMBINATION

Combined Estimates:
mean=/3.85
standard deviation=6.6

95% interval [59.4, 86.4]

60 70 80 90 100
g
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(@, |\| S \WE|GHTS VS EXPERT SUPPLIED

8
- -y

mean=/3.85
standard deviation=6.6 standard deviation=8.1
95% interval [59.4, 86.4] || 95% interval [55.7, 87.6]

mean=/3.9

p(q)

60 70 . 80 90 100
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PHY SICAL EXPERIMENTS: f(t|q)

f(t;) /

60 70 t8'0 9 100

To build alikelihood, f(t|q), from this data we need
some assumptions:

o Across the five experiments, T ~ (q,S)

« S must be estimated or predicted via some prior

For this example we will assume T~ MVN(Q,Sgyp)
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LIKELIHOOD RESULTS

A/f(th)

60 /0 80 90 100

mean=78.4 standard deviation=1.9
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BAYESIAN COMBINATION

Example with IMS weighted Priors (codes + experts),
and MV N Likelthood model (physical experiments).

poster|

/I Ikelihood

60 70 80 90 100
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BAYESIAN CRITIQUE

e Advantages
— optimally combines information

— naturally accommodates expert judgement and
Information updating

e Disadvantages
— gpecifications of priors can be difficult
(sensitivity analyses recommended)

— computationally complex
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CONCLUSIONS

Bayesian and classical methods have more
similarities than differences

The methods should not produce wildly different
results

Computing both is a good check for

— gpecification/computational errors

— sengitivities
Welghts are selected via theory or elicited from
experts --- theory Is not w/o assumptions

In practice, we would also put distributions on the
weights
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